SEVERE LOCAL STORMS, SEPTEMBER 1941-Continued | Place | Date | Time | Width
of path,
yards | Loss
of
life | Value of
property
destroyed | Character of storm | Remarks | |---|-------------------|-----------------------------|----------------------------|--------------------|-----------------------------------|-----------------------------|---| | Duluth, Minn | 14 | 2:10-4:35 p,m | | | \$125,000 | Rain and flood | Due to a prolonged wet period, the ground in this area was saturated befor
this storm started causing nearly all water to run off. 3.30 inches of rai
recorded on the 14th with damage resulting mainly from flooding and
caving in of basements in houses and business establishments. Much
damage to streets and sewer systems; tracks of railroads near the ed | | Gilman, Minn., and vicinity | 14 | 3:45 p, m | 275 | | 60, 000 | Possible tornado | of the lake undermined; and electric service interrupted. Several barns demolished: many resi lennes and buildings damaged; tree uprooted, havstacks scattered, corn flattened, and poultry killed. Lengtl of path 8 miles, from southwest to northeast. A funnel cloud observed 5 miles southwest of Gilman. Property damage, \$50,000; loss in growing crops, \$10,000. | | Halbur, Iowa, vicinity of | 14 | 4:30 p. m | | | 3, 000 | Wind | Property damaged, \$1,000; corn flattened, \$2,000. | | Hornick, Iowa, vicinity of
Lancaster County, Nebr | 14
14-15 | 3 p. m5 | | | 4, 000
20, 000 | Rain and wind | Property damaged.
Creeks overflowed, flooding highways, homes, and fields, causing floods in | | southern portion. Rochester, Albert Lea, and Weaver, Minn., and vicinities. | 15 | a. m.
A. m. and
p. m. |
 - - | | 15, 000 | Rain and flood | the Blue and Nemaha Rivers. Heavy to excessive rains in connection with a severe thunderstorm caused much damage to highways and bridges. Basements flooded and streets washed out. At Weaver a hillside washed over a highway. Some loss | | Hallock, Minn., and vicinity. | 15 | 4-6 p. m | | | 2, 000 | Thunderstorm | in growing crops. Storm moved from northwest to southeast and was accompanied by high winds. Property damage, \$500; loss to growing crops, \$1,500. | | Denton to Rokeby, Nebr
Guthrie Center to Dike,
Iowa, and vicinities. | 15
15 | 6–7 p. m
9 p. m | 1 5
12–3 | | 1, 000
15, 000 | Hail and rain Tornadic wind | Creeks flooded; small hail damage. Trees and branches blown down and windmills and small buildings wreck- ed, and some corn flattened. Near Dike a new, substantial barn totally | | Cassville, Wis., vicinity of Sloan, Iowa, vicinity of Ogden, Logan, and Farmington, Utah, and vicinities. | 15
21
21-22 | 2 p. m
P. m | | | 1, 500
900
250, 000 | Winddododo | wrecked. Barn and some buildings damaged. Buildings in small area damaged; boy cut by flying glass. An airplane hangar at the old Municipal airport and a small brick apartment, both under construction, were demolished, together with a number of small airplanes stored in the hangar. A firehouse in north Ogden partly destroyed and many residences in eastern portion of the city demonstration of the city demonstration of the city demonstration of the city demonstration. | |
Mesa Service Station, N. | 23 | 4-5:30 p. m | 1.15 | | | Heavy hail | aged. Several hundred shade trees down. Loss in crops, \$100,000 There was extensive loss in apples and ensilage corn crops and in a lesser degree to prunes and pears. Apples were blown from trees and corn flattened. Total estimated loss in Ogden, \$100,000. Two persons injured and power, light, and telephone service was interrupted. Structural damage in a much less degree occurred in Logan and Farmington, with widespread disruption to power and telephone service in the entire area. 20 sections of range grass damaged. | | Mex.
Lookeba, Okla | 24 | 5-5:30 p. m | | | 500 | Hail and wind. | Loss in cotton and corn; path 20 miles long. | | Erie, Pa., and vicinity | | э-э.эо р. m | | | 600 | Wind | Damage to telephone lines and trees; 2 automobiles damaged by falling | | Indiana | 25 | | |
 | 100,000 | Tropical disturb- | signs. High winds general over the entire State with considerable loss, especially | | New York State, counties
bordering on Lakes Erie
and Ontario and the upper
St. Lawrence. | 25 | | | | 2,000,000 | ance.
Wind | to apples. Some trees and wires down and property damaged. This storm of tropical origin, is reported as being the worst in any September in these areas. Maximum wind velocities rauged from 40 to 60 miles per hour. There was severe damage to orchards, telephone, telegraph and electric power lines, and considerable damage to buildings, small craft, automobiles, etc. The amount estimated for damage in western New York, only. The New York State Department of Agriculture reported | | Ohio, entire State | 25 | | | 1 | | do | loss in 1,500,000 bushels of apples.
Considerable damage to property and heavy loss to orchardists. Several
persons injured. Estimate of damage not given. | ¹ Miles instead of yards. #### SOLAR RADIATION AND SUNSPOT DATA FOR SEPTEMBER 1941 [Solar Radiation Investigations Section, I. F. HAND in charge] #### SOLAR RADIATION OBSERVATIONS By Sylvia Needre Measurements of solar radiant energy received at the surface of the earth are made at 9 stations maintained by the Weather Bureau and at 12 cooperating stations maintained by other institutions. The intensity of the total radiation from sun and sky on a horizontal surface is continuously recorded (from sunrise to sunset) at all these stations by self-registering instruments; pyrheliometric measurements of the intensity of direct solar radiation at normal incidence are made at frequent intervals on clear days at three Weather Bureau stations (Madison, Wis.; Lincoln, Nebr.; and Albuquerque, N. Mex.) and at the Blue Hill Observatory at Harvard University. Occasional observations of sky polarization are taken at the Weather Bureau station at Madison and at Blue Hill Observatory. The geographic coordinates of the stations, descriptions of the instrumental equipment, station exposures, and methods of observation, together with summaries of the data obtained, up to the end of 1939, are given in the Monthly Weather Review for December 1937, April 1941, and September 1941. Table 1 contains the measurements of the intensity of direct solar radiation at normal incidence, with means and their departures from normal (means based on less than 3 values are in parentheses). At Lincoln, Madison, Albuquerque, and Blue Hill the observations are obtained with a recording thermopile, checked by observations with a Smithsonian silver-disk pyrheliometer at Blue Hill. The table also gives vapor pressures at 7:30 a.m. and at 1:30 p.m. (75th meridian time). Table 2 contains the daily total amounts of radiation received on a horizontal surface from both sun and sky for all stations except Fairbanks, Alaska; and also the weekly means, their departures from normal and the accumulated departures since the beginning of the year. The values at most of the stations are obtained from the Eppley pyrheliometer recording either on a microammeter or a potentiometer. If the daily figures for total solar and sky radiation at Fairbanks should be desired, they may be obtained approximately 2 months after the date of the observation by writing to the Solar Radiation Investigations Supervisory Station, Blue Hill Observatory, Milton, Mass. Beginning with this issue, ultraviolet values obtained at San Juan will be included in table 2. These data represent the radiation below 3132 Angströms received on a horizontal surface. The unit is 1 milligram calorie, or one-thousandth of a gram calorie (see Kenrick and Ortiz, Measurements of Ultraviolet Solar Radiation in Puerto Rico, Trans. Amer. Geophys. Union (Section of Meteorology), volume 38, pp. 134-140, April 1938; and Studies in Solar Radiation and Their Relationship to Biophysics and the General Problem of Climate and Health, by G. W. Kenrick and George Del Toro, Jr., Puerto Rico Journal of Public Health and Tropical Medicine, June 1940, volume 15, No. 4, Columbia University Press. Pending international agreement, Coblentz intends using 3200 Å as the wavelength limit; see The Spectral Range of Ultraviolet Solar Radiation Useful in Bioclimatology, by W. W. Coblentz, Bulletin American Meteorological Society, October 1941, pp. 316-318.) Through the courtesy of Dr. O. C. Magistad, Assistant Chief of the Bureau of Plant Industry, United States Department of Agriculture, and Dr. L. A. Richards. Director of the United States Regional Laboratory at Riverside, Calif., we include this month about 1 year's record of total solar and sky radiation received on a horizontal surface at Indio and Torrey Pines, Calif. A comparison of these values with those obtained at La Jolla and Riverside is interesting because of the relatively close proximity of the four stations and their widely divergent totals. The pyrheliometer at La Jolla is located on one of the laboratory buildings of the Scripps Institution of Oceanography about 100 feet from the Pacific Ocean. The early morning fogs over this station result in much lower average morning values of radiation than at Torrey Pines, located on a bluff about 7 miles inland from La Jolla. The San Jacinto range lies between Riverside and Indio, with Riverside in the citrus belt and Indio in the date palm region 100 feet below sea level in the Imperial Valley. While Indio receives a very high percentage of sunshine. the region is visited frequently by severe duststorms. Table 1 shows that normal incidence radiation averaged slightly above normal for the month at all three stations for which means have been computed. Table 2 shows an excess in the amount of total solar and sky radiation received on a horizontal surface during September at all stations for which normals have been computed with the exception of Lincoln, Albuquerque and Friday Harbor, which is slightly below normal. Polarization measurements made on 6 days at Madison give a mean of 70 percent with maxima of 76 percent of the 6th and 17th. All of these values are close to average for September. The results of recalibration of instruments throughout the United States are given in a paper which appears on page 262 of this Review. Table 1.—Solar radiation intensities during September 1941 [Gram-calories per minute per square centimeter of normal surface] MADISON, WIS. | | | | 8 | Sun's z | enith d | listance | , _ | | | | |-------------------|--|--|--------------------------------------|---|---|---|--|-------|---|---| | 7:30
a. m. | 78.7° | 75.7° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | 1:30
p. m. | | 75th | | | | A | r mass | 3 | | | | Local | | mer.
time | | ۸. | м. | | | | Р. | м. | | solar
time | | e. | 5.0 | 4.0 | 3.0 | 2.0 | 1 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | e. | | mm.
9.83 | cal.
0. 90 | cal.
1.02 | cal.
1.13 | cal.
1.28 | cal.
1.46 | cal. | cal. | cal. | cal. | mm.
7, 57 | | 7. 57 | . 96 | 1.06 | 1.14 | 1.30 | 1.48 | 1 21 | | | | 8, 18
9, 14 | | | . 95 | | | | | | | | | 8.48 | | 12.68 | . 53 | .71 | . 91 | 1.07 | 1.34 | 1.08 | | | | 12. 24 | | 5. 16 | . 74 | .71 | . 79 | 1. 22 | 1.47 | 1. 15 | 1.03 | | | 5, 36 | | · · · · · · · · · | .81
+.05 | . 91
+. 03 | 1.03
+.03 | 1.23
+.08 | 1.44
+.05 | 1.19
+.04 | 1, 03 | | | | | | a. m. 75th mer. time e. mm. 9.83 7.57 8.81 7.78 12.68 | a. m. 75th mer. time e. 5.0 mm. cal. 9.83 0.90 7.57 .96 8.81 .98 7.78 7.4 12.68 .53 5.16 .74 | a. m. 68.7 63.7 75th mer, time | 7:30 a. m. 78.7° 75.7° 70.7° 75th mer. time A. M. e. 5.0 4.0 3.0 mm. cal. cal. cal. 9.83 0.90 1.02 1.13 7.57 .96 1.06 1.19 7.78 1.98 1.06 1.19 7.78 7.4 .88 1.02 12.68 .53 7.1 .91 5.16 74 .71 .79 .81 .91 .81 .91 1.03 | 7:30 a. m. 78.7° 75.7° 70.7° 60.0° 75th mer. time A. M. e. 5.0 4.0 3.0 2.0 mm. cal. cal. cal. cal. 9.83 0.90 1.02 1.13 1.28 7.57 .96 1.06 1.14 1.30 8.81 .98 1.06 1.19 1.35 7.78 .74 .88 1.02 1.18 12.68 .53 .71 .91 1.07 5.16 .74 .71 .79 1.22 | 7:30 a. m. 78.7° 75.7° 70.7° 60.0° 0.0° 75th mer, time A. M. e. 5.0 4.0 3.0 2.0 11.0 mm. cal. cal. cal. cal. cal. 9.83 0.90 1.02 1.13 1.28 1.46 7.57 .96 1.06 1.19 1.35 1.49 7.78 .74 .88 1.02 1.13 1.35 1.49 7.78 .74 .88 1.02 1.18 1.42 12.68 .53 .71 .91 1.07 1.34 1.42 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.5 | 7:30 a. m. 78.7° 75.7° 70.7° 60.0° 0.0° 60.0° 75th mer, time A. M. e. 5.0 4.0 3.0 2.0 11.0 2.0 mm. col. cal. cal. cal. cal. cal. 7.57 96 1.06 1.14 1.30 1.48 1.46 7.57 98 1.06 1.19 1.35 1.49 1.31 7.78 7.4 88 1.02 1.13 1.28 1.42 1.22 12.68 53 71 91 1.07 1.34 1.08 12.68 5.16 74 71 79 1.22 1.47 1.15 1.61 1.81 1.91 1.81 1.91 1.81 1.81 1.81 1.8 | a. m. | 7:30 a. m. 78.7° 75.7° 70.7° 60.0° 0.0° 60.0° 70.7° 75.7° 75th mer, time A. M. P. M. e. 5.0 4.0 3.0 2.0 11.0 2.0 3.0 4.0 mm. cal. cal. cal. cal. cal. cal. cal. cal | 7:30 a. m. 78.7° 75.7° 70.7° 60.0° 0.0° 60.0° 70.7° 75.7° 78.7° 75th mer, time A. M. P. M. e. 5.0 4.0 3.0 2.0 11.0 2.0 3.0 4.0 5.0 mm. cal. cal. cal. cal. cal. cal. cal. cal | | TABLE 1 | -Solai | radi | | inter
INCO | | | ng Se | ptem | ber 18 | 941— | Con. | |--|------------------|--------------|----------------|----------------|----------------|--------------|----------------|----------------|---------------|--------------|-----------------------| | | | | | s | un's ze | nith d | istance | | | | | | | 7:30
a. m. | 78.7° | 75. 7 ° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | 1:30
p. m. | | Date | 75th | | · | · | A | ir mass | · | | · | | Local | | | mer.
time | | Α. | м. | | | | Р. | м. | - | mean
solar
time | | | е. | 5.0 | 4.0 | 3.0 | 2.0 | 11.0 | 2.0 | 3.0 | 4.0 | 5.0 | е. | | | mm. | cal. mm. | | Sept. 5 | 10, 21
11, 38 | | | | 1. 23
1. 08 | | 1. 21 | | | | 7, 87
16, 79 | | Sept. 9
Sept. 10 | 8. 18
7. 87 | | 0, 90 | 1.03 | 1. 20 | · • · • • • | 1. 25
1. 14 | 1.10
96 | 0.97 | 0.88 | 7. 57
9. 14 | | | 9.47 | | . 96 | 1.08 | 1. 23 | | 1. 21 | 1.06 | . 92 | . 79 | 9.47 | | Sept. 11
Sept. 16
Sept. 18
Sept. 19
Sept. 20
Sept. 22
Sept. 23
Sept. 26
Sept. 30 | 13. 13
15. 11 | 0.71 | . 82 | . 94 | 1, 14
1, 13 | | 1. 19 | 1.03 | .90 | . 82 | 10. 21
16. 79 | | Sept. 19 | 16, 79 | . 64 | | | 1. 10 | | | | | | 16, 21 | | Sept. 20
Sept. 22 | 16, 79
11, 38 | .71 | . 84 | . 96 | 1. 10 | <u>-</u> - | . . | . 94 | .84 | . 75 | 16. 21
14. 10 | | Sept. 23 | 10.59 | | | . 79 | 1.08 | | 1.10 | | | | 11.38 | | Sept. 30 | 6. 76
7. 04 | . 77 | . 88 | 1.05
1.11 | 1. 21
1. 29 | | 1. 10 | | | | 7. 57
10. 21 | | Means
Departures | | .71
03 | .89
04 | . 99
02 | 1.16
+.01 | | 1. 18
+. 02 | 1, 02
+, 04 | . 89
+. 05 | .79
+.05 | | | | <u> </u> | <u> </u> | B | LUE H | IILL, I | MASS. | | <u> </u> | <u> </u> | <u> </u> | | | Sept. 3 | 7. 6 | 0.79 | 0. 90 | 1.00 | | | 1. 25 | 1. 12 | 1.02 | 0.94 | 8. 8 | | Sept. 6
Sept. 7 | 14. 7
10. 3 | . 65 | . 76 | (. 91) | 1.12 | 1. 25 | | | . 75 | . 64 | 11.1 | | Sept. 8 | 7.1 | . 86 | . 95 | 1.06 | 1. 19 | 1.42 | 1. 20 | . 97 | | | 7.9 | | Sept. 9
Sept. 12 | 8.8
6.5 | . 96 | 1.04 | . 90 | | | | | | . 74 | 10, 7
5, 8 | | Sept. 13
Sept. 16 | 5. 4
13. 2 | . 97 | 1.05 | . 75 | | 1.44 | 1. 22 | 1.03 | .87 | . 74 | 3.8
15.8 | | Sept. 18 | 8.8 | . 87 | . 95 | | | | | | | | 5. 6 | | Sept. 19
Sept. 20 | 6. 3
6. 5 | . 90 | 1.03 | 1.15 | 1. 27 | | | 1.06 | . 91 | | 5. 2
6. 1 | | Sept. 21 | 8.8
9.9 | . 75 | . 86 | . 98
1. 02 | 1. 15
1. 17 | | 1.12 | . 95 | . 81 | . 69 | 7.4
8.8 | | Sept. 22
Sept. 23 | 8.6 | . 79 | . 91 | . 83 | 1.03 | | | | | | 12.3 | | Sept. 24
Sept. 25 | 8.8
9.2 | . 67 | . 77 | . 92 | 1.08 | 1.49 | 1. 22 | 1.08 | (.84) | (. 79) | 10. 3
8. 2 | | Sept. 30 | 3. 2 | | . 98 | (1.09) | | | | | | | 4.4 | | Means
Departures | | 78
02 | 89
02 | 96
06 | 1. 14
+. 01 | 1.40
+.03 | 1.20
+.07 | 1.04
+.10 | .84
+.04 | +. 07 | | | | · | | AL | BUQU | ERQ | UE, N. | MEX | | <u> </u> | | <u> </u> | | Sept. 1 | 13. 15
12. 24 | 0.61 | 0.90 | 1.03 | 1.16 | 1.42 | 1. 21
1. 17 | 1.08 | 0.90 | 0.80 | 11.38
11.38 | | Sept. 4 | 5. 36 | 0.81 | | | | | 1.31 | 1.14 | 1.02 | . 91 | 6.02 | | Sept. 5
Sept. 7 | 3. 59
7. 57 | . 84 | . 95 | 1.07 | 1, 24 | 1, 56 | 1.34
1.29 | 1. 20
1. 14 | 1.08
1.02 | . 95
. 88 | 4.75
7.29 | | Sept. 8
Sept. 9 | 7.04 | . 91 | 1.04 | 1.13 | 1.30 | | 1, 32 | 1.18 | 1.01 | .90 | 6, 50
5, 56 | | Sept. 10 | 6. 76
4. 36 | . 86 | 1.01 | 1, 12 | 1.31 | 1.49 | | | 1.04 | | 7.87 | | Sept. 11
Sept. 15 | 7. 57
10. 20 | . 90 | 1.01 | 1. 12
1. 14 | 1.34
1.28 | 1.52 | 1.30
1.30 | 1.17 | 1.06
1.04 | .97 | 7.87
8.49 | | Sept. 16 | 5.79 | . 94 | 1.03 | 1.14 | 1. 27 | 1, 49 | 1.30 | 1.16 | 1.07 | . 97 | 6. 27 | | Sept. 17
Sept. 18 | 8. 49
10. 20 | . 85 | . 95 | 1.07 | 1. 19 | 1.47
1.49 | 1.25
1.25 | 1.08
1.09 | . 98
. 99 | . 90 | 9.14
10.20 | | Sept. 19 | 11.81 | . 82 | . 94 | 1.05 | 1.19 | 1.48 | | | | | 11.81
12.24 | | Sept. 20
Sept. 21 | 11. 81
10. 98 | .88 | . 95 | 1. 13 | 1. 27 | | | | | | 9.83 | | Sept. 22
Sept. 23 | 9. 46
8. 18 | | 1.05 | 1, 16 | 1.31 | 1. 55 | 1. 27 | 1.14 | 1.01 | . 88 | 9.46
6.76 | | Sept. 24 | 5.36 | | 1.01 | 1, 14 | 1.30 | 1, 53 | 1. 29 | 1.14 | 1.03 | . 94 | 4.75 | | Sept. 25
Sept. 27 | 4. 95
7. 87 | . 99 | $1.12 \\ 1.00$ | 1.20
1.13 | 1.34
1.29 | | 1.35 | 1.14 | 1.12 | 1.01 | 5, 15
9, 46 | | Sept. 29 | 6, 27 | | | | | | 1. 28
1. 30 | 1.14
1.14 | 1.03 | . 94 | 8, 81
8, 81 | | Sept. 30 | 8, 18 | .88 | 1.00 | 1, 11 | 1. 29
1. 27 | 1.50 | 1. 28 | 1, 14 | 1.02 | . 92 | | | <u> </u> | <u> </u> | 1 | <u> </u> | LAT) | E DA | TA | <u> </u> | · | | | <u> </u> | | | · | | | | Hill, M | | | | | <u> </u> | | | July 3
July 5 | 9. 6
11. 9 | | | | 0.99 | 11.17 | | 0.70 | 0. 59 | | 10.7
11.9 | | July 6 | 12.8
11.5 | 0.58
.52 | 0.70 | 0.78
.89 | .97 | | | . 98 | . 89 | | 11.5
9.6 | | July 10
July 14 | 13.7 | | | .99 | | | | | | | 11.1 | | July 15
July 16 | 10. 7
11. 5 | | | | | 11.27 | 0.96 | . 82
. 71 | .71
.51 | | 11.9
13.2 | | July 21 | 10.3 | .77 | . 87 | 1.03 | 1. 13 | 11.28 | . 92 | . 72 | .60 | 0.47 | 9.9 | | July 22
July 26 | 10. 7
17. 5 | . 43 | . 51 | . 63 | 83 | | 1.02 | | | | 12, 8
15, 3 | | July 27 | 14.3 | ['] | | | 1.00 | | | | . 69 | | 10.7 | | | | | | | | | | | | | | Departure.... 1 Extrapolated. ### LATE DATA—Continued Blue Hill, Mass.-Continued [Gram-calories per minute per square centimeter of normal surface] Table 1.—Solar radiation intensities during September 1941—Con. Table 1.—Solar radiation intensities during September 1941—Con. #### LATE DATA—Continued Blue Hill, Mass.-Continued [Gram-calories per minute per square centimeter of normal surface] | | | | | 8 | un's z | enith d | istance | · | | | | | | | | £ | lun's ze | enith d | istance | ; | | | | |--|-------------------------------|----------------------|----------------------|-------------------------------|-------------------------|----------------|----------------|-----------------------|--------------|--------------|--------------------------------|--|-------------------------------|------------------------------|-----------------------|------------------------|-------------------------|----------------|----------------|----------------|----------------------|----------------------|------------------------------| | | 7:30
a. m. | 78.7° | 75.7° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | 1:30
p. m. | | 7:30
a. m. | 78.7° | 75.7° | 70.7° | 60.0° | 0.0° | 60.0° | 70.7° | 75.7° | 78.7° | 1:30
p. m. | | Date | 75th
mer. | | | | A | ir mass | | · | | | Local
mean | Date | 75th
mer. | | | | A | ir mass | ; | | | | Local
mean | | | time | | Λ. | м. | | | | P. | м. | | solar
time | | time | | ٨. | М. | | | | P. | м. | | solar
time | | | е. | 5.0 | 4.0 | 3.0 | 2.0 | 1 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | е. | | e. | 5.0 | 4.0 | 3.0 | 2.0 | 11.0 | 2.0 | 3.0 | 4.0 | 5.0 | e. | | August 2 | mm,
15.3
12.3 | cal. | cal. | cal. | cal. | cal. | cal. | cal.
.63 | cal.
. 54 | cal.
. 49 | mm.
13.7
11.9 | September 3
September 6 | mm.
7.6
14.7 | cal.
.79 | cal.
.90 | cal.
1.00 | cal. | cal. | cal.
1. 25 | cal.
1.12 | cal.
1.02 | cal.
. 94
. 64 | mm.
8.8
11.1 | | August 5
August 5
August 6 | 11.9
13.2
11.5 | . 56
. 62
. 49 | | .79
.84
.72 | . 96
. 96
. 86 | | | | | | 13. 2
11. 5
10. 7 | September 7
September 8
September 9 | 10.3
7.1
8.8 | . 65 | .76
.95 | (.91)
1.06
.90 | 1.12
1.19 | 1. 25
1. 42 | 1. 20 | . 97 | | | 7. 9
10. 7 | | August 7
August 8
August 9
August 10 | 9.6
11.9
11.9
11.9 | . 43
. 49
. 78 | . 52
. 60
. 85 | . 66
. 73
. 91
1. 03 | 1, 02
1, 13 | 1. 27 | . 94 | . 75 | . 65 | . 56 | 8. 8
11. 5
12. 3
9. 2 | September 12.
September 13
September 16.
September 18. | 6. 5
5. 4
13. 2
8. 8 | . 96
. 97
. 51
. 87 | 1.04
1.05
.60 | . 75 | | 1.44 | 1. 22 | 1.03 | . 87
. 73 | .74 | 5.8
3.8
15.8
5.6 | | August 11
August 17
August 21
August 22 | 8, 2
9, 2
9, 9
12, 1 | . 77 | . 87 | .98 | 1.10 | 1, 28
1, 29 | | . 76 | . 65 | . 54 | 9. 6
5. 8
11. 1
13. 2 | September 19.
September 20.
September 21.
September 22. | 6, 3
6, 5
8, 8
9, 9 | , 90
 | 1, 03
. 86
. 91 | 1, 15
. 98
1, 02 | 1. 27
1. 15
1. 17 | | 1. 12 | 1.06
.95 | . 91
. 81
. 82 | . 69 | 5. 2
6. 1
7. 4
8. 8 | | August 24
August 28 | 8. 8
6. 1 | . 82
. 89 | . 89
. 98 | . 99
1. 11
. 86 | 1. 12
1. 19
1. 01 | 1. 23 | 1, 17
1, 06 | . 95
1. 01
. 82 | .81
.87 | . 68
. 78 | 8. 6
5. 8 | September 23.
September 24.
September 25.
September 30 | 8.6
8.8
9.2
3.2 | . 67
. 67 | .72
.77
.98 | .83
.92 | 1, 03
1, 08 | 1.49 | 1. 22 | 1.08 | (. 84) | (. 79) | 12.3
10.3
8.2
4.4 | | Departure | | 02 | 03 | 05 | 05 | | +. 01 | 05 | +.01 | +. 03 | | Mean
Departure | | . 78
02 | . 89
02 | . 96
06 | 1. 14
. 00 | 1. 40
+. 03 | 1. 20
+. 07 | 1. 04
+. 10 | . 84
+. 04 | . 75
+. 07 | | Table 2.—Daily totals and weekly means of salar radiation (direct + diffuse) received on a horizontal surface ·[Gram-calories per square centimeter] | | Wash-
ington | Madi-
son | Lincoln | New
York | Chicago | Fresno | Albu-
querque | Fair-
banks | New-
port | Ithaca | Cam-
bridge | Blue
Hill | Friday
Harbor | River-
side | New
Orleans | La Jolla | State
College | San
Juan | San
Juan | |--|---|---|---|---|---|---|---|-------------------|---|-----------|---|---|---------------------------------|---|---|---|---|---|---| | Sept. 3 | cal.
224 | cal.
206 | cal.
446 | cal.
440 | cal.
290 | cal.
596 | cal.
578 | cal. | cal.
580 | cal. | cal.
548 | cal.
567 | cal.
93 | cal.
511 | cal.
542 | cal.
533 | cal.
173 | cal.
522 | U. V.
below
3132
Å,
Milli.
cal.
365 | | Sept. 4
Sept. 5
Sept. 6
Sept. 7
Sept. 8
Sept. 9 | 106
326
545
476
487
499 | 328
506
524
375
110
87 | 443
559
438
492
360
488 | 117
258
546
522
571
360 | 406
468
544
482
364 | 583
573
563
573
574
555 | 618
621
465
597
560
613 | | 388
159
525
524
561
247 | | 435
161
518
531
553
288 | 408
99
501
502
567
307 | 476
487
256
213
378 | 538
511
511
476
539
510 | 551
569
563
418
523
431 | 384
241
498
538
514
446 | 212
439
509
303
562
503 | 450
94
90
565
525 | 211
283
153
239
432
311 | | Mean
Departure | 381
11 | 305
—70 | 461
+17 | $^{402}_{+65}$ | 426
+61 | 574
+12 | 579
+23 | 275
+68 | $^{426}_{-39}$ | | $^{433}_{+45}$ | 422
+29 | $^{332}_{-82}$ | 514
+44 | 514
+92 | $451 \\ -37$ | 386 | 502 | 293 | | Sept. 10
Sept. 11
Sept. 12
Sept. 13
Sept. 14
Sept. 15
Sept. 16 | 465
534
568
504
544
538
522 | 542
331
477
466
395
145
356 | 522
538
493
128
268
328
528 | 409
522
583
501
491
446
431 | 545
549
488
463
489
410
249 | 543
563
558
546
556
544
529 | 535
535
535
294
568 | | 209
451
538
546
506
469
455 | | 376
495
500
525
470
477
390 | 410
457
500
574
467
464
453 | 286
378 | 537
487
489
502
498
521
515 | 526
359
496
261
149
394
310 | 576
429
518
428
552
542
487 | 374
473
585
553
556
503 | 366
499
469
148
239
284
298 | 301
416
433
246
281
180
152 | | Mean
Departure | 525
+148 | 387
+43 | 401
18 | $^{483}_{+154}$ | $^{456}_{+125}$ | 548
+21 | 494
—4 | $174 \\ -24$ | $^{454}_{+49}$ | | $^{462}_{+70}$ | 475
+96 | | 507
+61 | 356
-2 | 505
+5 | 507 | 431 | 2 95 | | Sept. 17
Sept. 18
Sept. 19
Sept. 20
Sept. 21
Sept. 22
Sept. 23 | 483
461
504
526
458
462
490 | 513
479
463
423
423
436
328 | 404
466
456
466
290
360
459 | 411
508
516
503
435
353
447 | 530
548
486
450
463
427
373 | 513
529
517
532
527
527
518 | 506
525
295
260
548 | | 420
516
539
526
515
468
432 | | 399
506
492
457
469
451
393 | 426
520
513
512
488
477
424 | 395
215
321
320 | 457
406
517
499
529
536
523 | 355
518
596
587
318
100
440 | 264
430
345
506
527
543
536 | 348
532
544
519
522
442
447 | 301
475
499
250
336
420 | 184
396
347
374
309
353
297 | | Mean
Departure | 483
+109 | 438
+87 | 414
+1 | $^{453}_{+141}$ | 468
+117 | $^{523}_{+36}$ | 427
-33 | $\frac{238}{+64}$ | 488
+93 | - | $^{452}_{+76}$ | 480
+104 | 313
11 | 495
+26 | 416
+40 | 450
+30 | 479 | 424 | 311 | | Sept. 24
Sept. 25
Sept. 26
Sept. 27
Sept. 28
Sept. 29
Sept. 30 | 427
306
379
415
426
418
210 | 320
173
452
346
119
287
167 | 75
356
446
287
254
42
437 | 399
441
370
418
225
303
300 | 362
93
456
408
89
254
104 | 515
481
478
481
463
476
481 | 549
584
459
354
130
314
525 | | 474
455
395
351
306
366
331 | | 377
387
443
336
379
338
267 | 314
449
425
330
364
390
356 | 251
368
94
252
261 | 504
483
489
478
399
351
476 | 284
371
392
410
461
548
525 | 500
478
514
468
403
284
481 | 441
145
342
448
415
303
395 | 403
432
465
176
228
449
465 | 307
314
309
131
94
313
333 | | Mean
Departure | 369
+18 | 266
-32 | 271
-93 | 351
+66 | 252
-34 | 482
+33 | 416
-16 | 170
+34 | 382
+39 | | $^{361}_{+42}$ | 377
+35 | 245
-57 | 454
+3 | 427
+46 | 448
+55 | 355 | 377 | 258 | ACCUMULATED DEPARTURES ON SEPTEMBER 30 | | | | | | | | | | | | | |
 | | | | | | |---|--------|--------|--------|---------|---------|--------|---|--------|--------|---|--------|-----|----------|-------------|---------|-----|-----|---| | | ĺ | | | | l | l | 1 | ľ | 1 . | 1 | | | 1 | | 1 | 1 1 | , , | 1 | | • | +5.005 | +3.549 | -6.083 | +17.731 | +15,330 | -1,246 | | -1.596 | -2.128 | | +1,680 | -84 |
-197 | ± 11802 | -3.472 | | | | | | 1 -, | 1 -, | , | , | 1 | -, | | -,-0- | , | | , -, | |
 | , == | -, -, - | | , | | | | | Ł | 1 | , | | | | | , , | | | | | | | | | 1 | Table 2.—Daily totals and weekly means of solar radiation (direct + diffuse) received on a horizontal surface—Continued #### LATE DATA | | | | | | | 1940, v | veek begin | ning— | | | | | | |-------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|--------------------|--------------------|--------------------|--------------------| | | July 1 | July 8 | July 15 | July 22 | July 29 | Aug. 5 | Aug. 12 | Aug. 19 | Aug. 26 | Sept. 2 | Sept. 9 | Sept. 16 | Sept. 23 | | Indio, Calif | cal.
748
594 | cal.
667
700 | cal.
766
663 | cal.
688 | cal.
698 | cal.
641
616 | cal.
638
521 | cal.
638
587 | cal.
573
549 | cal.
581
544 | cal.
544
546 | cal.
513
453 | cal.
498
483 | | | | | | | | We | ek beginni | ng | | | | | | | | Sept. 30 | Oct. 7 | Oct. 14 | Oct. 21 | Oct. 28 | Nov. 4 | Nov. 11 | Nov. 18 | Nov. 26 | Dec. 5 | Dec. 9 | Dec. 16 | Dec. 23 | | Indio, Calif
Torrey Pines, Calif | cal.
463
452 | cal.
482
430 | cal.
444
425 | cal.
385
340 | cal.
397
394 | cal.
382
342 | cal. | cal.
298 | cal.
330 | cal.
299 | cal.
241 | cal.
207 | cal.
174 | | | | | | 1 | | 1941, 1 | week begin | ning— | <u></u> | | | · | <u> </u> | | | Jan. 1 | Jan. 8 | Jan. 15 | Jan. 22 | Jan. 29 | Feb. 5 | Feb. 12 | Feb. 19 | Feb. 26 | Mar. 5 | Mar. 12 | Mar. 19 | Mar. 26 | | Indio, Calif
Torrey Pines, Calif | cal.
301 | cal. | cal. | cal. | cal.
350 | cal.
325 | cal.
319 | cal.
381 | cal.
330 | cal.
472 | cal.
423 | cal.
564 | cal.
498 | | | | | | 1 | | We | ek beginni | ng— | <u>' </u> | L | ! | <u> </u> | · | | • | Apr. 2 | Apr. 9 | Apr. 16 | Apr. 23 | Apr. 30 | May 7 | May 14 | May 21 | May 28 | June 4 | June 11 | June 18 | June 25 | | Indio, Calif | cal.
621
624 | cal.
520
407 | cal.
625
686 | cal.
628
399 | cal.
632
499 | cal.
727
682 | cal.
732
590 | cal.
683
651 | cul.
712
632 | cal.
712
496 | cal.
740
562 | cal.
763
692 | cal. 751 | # [Communicated by Capt. J. F. Hellweg, U. S. Navy (Ret.), Superintendent, U. S. Naval Observatory.] All measurements and spot counts were made at the Naval Observatory from plates taken at the observatories indicated. Difference in longitude is measured from the central meridian, positive toward the west. Latitude is positive toward the ## POSITIONS, AREAS, AND COUNTS OF SUN SPOTS FOR POSITIONS, AREAS, AND COUNTS OF SUN SPOTS FOR SEPTEMBER 1941—Continued Heliographic | north,
hemispl
count, a | Are
here.
ire ii | as ar
Fo | re correct
or each di | ted for
ay, un-
ned lor | forest
der lon
gitude | iorteni
igitude
e of cen | ng and
, latitu
ter of t | l expre
de, are
he disk | ssed in
a of sp
a assur | n millio
ot or g | ive toward the onths of Sun's roup, and spot titude of center | Date | Ea
er
star
ar
tin | n
nd-
d | Mount
Wilson
group
No. | Dif-
fer-
ence
in
longi- | Lon-
gi-
tude | Lati-
tude | Dis-
tance
from
cen-
ter of | Area
of
spot
or
group | Spot
count | Plate
qual-
ity | Observatory | |-------------------------------|------------------------|-----------------------------|--------------------------------------|--|-----------------------------------|--------------------------------|---|------------------------------------|-------------------------------|---------------------|---|-----------------|-------------------------------|---------------|--------------------------------------|--|-------------------------------|--|---|-----------------------------------|-----------------------|-----------------------|--------------| | | | | | | Heliog | raphic | ; | | | | į | | | | | tude | | | disk | | | | | | Date | ei
sta
ai | st-
n
nd-
nd
ne | Mount
Wilson
group
No. | Dif-
fer-
ence
in
longi- | Lon-
gi-
tude | Lati-
tude | Dis-
tance
from
cen-
ter of | Area
of
spot
or
group | Spot
count | ity | Observatory | 1941
Sept. 5 | | m
23 | 7277
7273
7274
7273 | -52
-7
-6
+3 | 306
351
352
1 | +12
+15
-8
+12 | 52
11
16
6 | 48
48
291
97 | 5
10
14
8 | G | U. S. Naval. | | | | | | tude | | | disk | | | | | | | | | | (358) | (+7) | | 484 | 37 | | | | 1941
Sept. 1 | h
10 | m
40 | 7275 | -67 | 。
344 | °
+3 | 67 | 24 | 6 | G ' | U. S. Naval. | Sept. 6 | 10 | 50 | 7277
7274
7273
7273 | $ \begin{array}{r} -39 \\ +6 \\ +7 \\ +16 \end{array} $ | 306
351
352
1 | $^{+12}_{-7}_{+14}$ | 39
15
10
17 | 48
364
24
48 | 10
24
4
7 | VG | Do. | | | | | 7274
7273 | -64
-59 | 347
352 | -9 + 13 | 65
59 | 291
97 | 10
9 | | | | | | | | (345) | (十7) | | 484 | 45 | | | | | | | 7272
7269
7264 | $ \begin{array}{r} -50 \\ -6 \\ +78 \end{array} $ | 1
45
129
(51) | -16 + 10 + 13 + 13 + 17 | 54
6
78 | 24
97
388
921 | 3
7
9
44 | | | Sept. 7 | 14 | 35 | 7278
7274
7273 | $^{+5}_{+21}_{+31}$ | 335
351
1 | $^{-9}_{-7}_{+12}$ | 17
26
32 | 48
388
48 | 9
16
10 | G | Do. | | Sept. 2 | 11 | 25 | 7275 | -54 | 344 | +3 | 54 | 18 | 4 | VG | Do. | | | | | | (330) | (十7) | | 484 | 35 | | | | | | | 7274
7273
7272
7269
7276 | -50
-43
-35
+8
+50 | 348
355
3
46
88
97 | -8
+13
-15
+9
+14 | 53
43
41
9
50
61 | 291
315
24
48
48
24 | 12
22
2
9
4
6 | | | Sept. 8 | 10 | 59 | 7278
7279
7274
7273 | +19
+29
+35
+43 | 338
348
354
2 | $ \begin{array}{r} -9 \\ -3 \\ -7 \\ +14 \end{array} $ | 25
32
38
44 | 97
36
412
97 | 10
6
22
11 | VG | Do. | | | | 1 | (*)
7264 | +59
+88 | 126 | $^{-4}_{+14}$ | 88 | 145 | 1 | | | | | | | ľ | (319) | (+7) | | 642 | 49 | | | | Sept. 3 | 11 | 37 | 7274
7273
7272 | -35
-29
-22 | (38)
350
356
3 | (+7)
-8
+13
-15 | 38
30
31 | 913
291
242
24 | 60
12
20
3 | G | Do. | Sept. 9 | 11 | 21 | 7278
7274
7274
7273 | +32
+43
+49
+59 | 337
348
354
4 | $ \begin{array}{r} -9 \\ -7 \\ -7 \\ +12 \end{array} $ | 35
45
51
60 | 73
48
339
73 | 8
15
1
1 | G | Do. | | | | | 7269 | +21 | 46
(25) | +10
(+7) | 22 | - 24
581 | 37 | | | | | | | ! | (305) | (+7) | | 533 | 25 | | | | Sept. 4 | 11 | 34 | 7277
7274
7273
7273
7269 | $ \begin{array}{r} -66 \\ -21 \\ -20 \\ -11 \\ +36 \end{array} $ | 305
350
351
0
47 | +12
-8
+15
+12
+9 | 67
26
22
13
36 | 12
291
48
145
24 | 1
12
1
15
5 | G | Mt. Wilson. | Sept. 10 | 11 | 23 | 7281
7280
7278
7274
7273 | $ \begin{array}{r} -81 \\ -67 \\ +45 \\ +61 \\ +72 \end{array} $ | 211
225
337
353
4 | $^{+10}_{-8}$ $^{-9}_{-7}$ $^{+12}$ | 81
69
47
63
72 | 485
12
24
339
73 | 3
1
6
4
1 | G. | Do. | | | | } | | i | (11) | (+7) | | 520 | 34 | | | | | | | | (292) | (+7) | | 933 | 15 | | |